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Abstract
We study the interaction of a scalar and a spinning particle with a coherent
linearized gravitational wave field treated as a classical spin two external field.
The spin degrees of freedom of the spinning particle are described by skew-
commuting variables. We derive the explicit expressions for the eigenfunctions
and the Green’s functions of the theory. The discussion is exact within the
approximation of neglecting radiative corrections and we prove that the result
is completely determined by the semi-classical contribution: this is shown
by comparing the wavefunctions with the (pseudo)classical solutions of the
Hamilton–Jacobi equation.

PACS numbers: 03.65.Db, 03.65.Sq

1. Introduction

For many years Grassmann variables have been a common practice for giving a pseudoclassical
framework to describe spin [1–5], or other internal degrees of freedom of elementary particles
[6]. Of course the value of such models must be thought of in view of their quantization,
that can be the canonical one or, in view of the inherent pseudoclassical description, the path
integral quantization. Although some technical caution had to be taken in extending the path
integral to skew-commuting variables (it is, for instance, relevant whether their number is even
or odd), nevertheless the programme was successfully carried out, see e.g., [7].

We have recently presented the quantization of the theory describing a spin 1
2 particle in an

external electromagnetic wave field by using the path integral and external source method and
we have produced the corresponding Feynman propagator [8]. The electromagnetic interaction
at the pseudoclassical level was introduced by the standard minimal coupling directly in the
constraints describing the theory. The self-consistency of the theory automatically produced
the non-minimal electromagnetic coupling characteristic for the spin 1

2 particle (Pauli term).
The calculations leading to the final result were straightforward, although somewhat complex,
due to the above-mentioned cautions. In this paper, we consider the problem of describing
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the interaction of a scalar and a spinning particle at a first quantized level with an external
gravitational field. Of course, if we do not want to go far beyond our possibilities of performing
explicit calculations, the gravitational field must be taken in the linear approximation. Even
with this simplifying assumption, however, we have to face new features with respect to [8],
such as the treatment of covariant derivatives of Grassmann variables, responsible for the
spin–gravitational field interaction and whose affine connections have to be substituted with
their symmetric part, implying that the spinning particle cannot be directly coupled to the
torsion [9]. Following the approach started by [10], we are able to evaluate the eigenfunctions
and the Feynman kernel if we assume that the linearized field is that of a gravitational wave.
When restricting ourselves to the even sector, we recover the propagator of a scalar particle,
calculated in [11], by using symmetry arguments and canonical transformations in the path-
integral framework.

Results in this direction have been known since some years. In [12], the solution for a
Klein–Gordon particle interacting with a general plane gravitational wave was studied and
the semi-classical nature of the wavefunction was observed. In [13], the solution for a Dirac
particle in the background of a gravitational plane wave was derived by using coordinates
similar to the light-cone ones. The scattering cross section was also calculated and it was
found to be the same as in the scalar case, indirectly proving its semi-classical nature in
this case too. A classical approach to the scattering of scalar and spinning test particles
by gravitational plane waves was given in [14], by using the Mathisson–Papapetrou–Dixon
equation. In the present paper, we want to revisite the analogies between the classical and
the quantum problems, by unifying them in the framework of the pseudoclassical mechanics.
Indeed, the use of the Hamilton–Jacobi theory with Grassmann variables will prove to be
a very powerful tool for calculating the quantum mechanical wavefunctions in terms of the
pseudoclassical action.

A brief summary of the paper is as follows. In section 2, we give the main definitions of
the physical quantities as well as the gauge conditions we will assume on the metric and on the
affine connections. We then calculate the wavefunction for the scalar particle, whose Green’s
function is discussed in section 3 together with its semi-classical limit. The linearized theory
for a spinning particle in the external gravitational wave is described in section 4, while in the
final section 5 we consider the corresponding Green’s function and we show, for the spinning
particles too, the semi-classical nature of the results.

2. Scalar particle in an external gravitational wave: linear theory

According to general relativity, the interaction of matter with a given gravitational field is
introduced in a geometrical way by replacing the flat Minkowski metric ηµν = (+,−,−,−)

by a tensor gµν(x) depending upon the coordinates xµ = (x0,−→x ) ≡ (t,−→x ) and by using the
general covariance principle [15]. Therefore, the action describing a massive scalar particle
interacting with an external gravitational field can be written as

S =
∫

d4x
√

−g(x)L(φ(x),Dµφ(x)) (2.1)

where g(x) is the determinant of the metric and Dµ the covariant derivative. Letting gµν(x)

be the inverse of the metric tensor, the Lagrangian density L has the form

L = 1
2gµν(x)Dµφ(x)Dνφ(x) − 1

2m2φ2(x) (2.2)

and produces the equation of motion

(gµν(x)DµDν + m2)φ(x) = 0. (2.3)
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The energy–momentum tensor of the matter field, in the absence of gravity, is obtained by the
usual relation

T
µν

0 (x) = − 2√−g(x)

δS

δgµν(x)

∣∣∣∣
gµν(x)=ηµν

= −ηµνL0 + ∂µφ(x)∂νφ(x) (2.4)

where L0 is the free Lagrangian density. When the gravitational field is weak and described
by a small perturbation to the flat metric

gµν(x) � ηµν + hµν(x), gµν(x) � ηµν − hµν(x) (2.5)

we can consider the linearized theory with a Lagrangian density

L = L0 − 1
2hµν(x)T

µν

0 (x) = (
1 + 1

2h(x)
)
L0 − 1

2hµν(x)∂µφ(x)∂νφ(x) (2.6)

where h(x) = ηµνh
µν(x) = hµ

µ(x). The Lagrange equations derived from (2.6) are thus((
1 + 1

2h(x)
)
(∂µ∂µ + m2) − hµν(x)∂µ∂ν − (

∂µhµ
ν (x) − 1

2∂νh(x)
)
∂ν

)
φ = 0. (2.7)

Upon multiplying on the left by the factor (1 − h(x)/2), at this order in hµν(x) equation (2.7)
can be further simplified to(

∂µ∂µ − hµν(x)∂µ∂ν − (
∂µhµ

ν (x) − 1
2∂νh(x)

)
∂ν + m2

)
φ = 0. (2.8)

From (2.8) it appears that we are considering a theory describing the interaction of scalar
matter with a given gravitational field treated as a spin two external field in a flat Minkowski
space–time [16].

As is well known that there are some conditions that can be imposed on the metric
tensor, in analogy to the gauge choice for the vector potential Aµ(x) in electrodynamics. A
particularly convenient requirement is represented by the harmonic condition [15]

gµν(x)�λ
µν(x) = 0 (2.9)

whose linearization reads

∂µhµ
ν (x) = 1

2∂νh(x). (2.10)

To our purpose it turns out to be even more convenient to choose a restriction of the general
harmonic gauge, that is

∂µhµ
ν (x) = 0, h(x) = 0. (2.11)

This choice, in addition to some algebraic simplifications, also avoids the more serious ordering
problem that would be present in some terms of equation (2.7). Finally, we consider the
linearized gravitational field as the one produced by a wave of arbitrary spectral composition
and polarization properties, but propagating in a fixed direction:

gµν(x) � ηµν + hµν(κx), hµν(κx) = aµνf (κx), κx = k · x. (2.12)

Here, k2 = 0 and aµν = aνµ is the polarization tensor. Due to these choices equation (2.11)
then becomes

kµaµ
ν = 0, aµ

µ = 0 (2.13)

and it is easy to cast the linearized Klein–Gordon wave equation (2.7) into the form

(∂µ∂µ − hµν(x)∂µ∂ν + m2)φ(x) = 0. (2.14)

Remembering the derivation of the Volkov solution for the problem of spin 1
2 particle in

a electromagnetic wave field [8, 10], we look for a solution of (2.14) in the form

φp(x) = (2p0V )−
1
2 exp(−ip · x − iF(κx)), (2.15)
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where pµ is a constant 4-vector and F(κx) → 0 as x0 → −∞. Moreover, since F(κx) is
still an undetermined function, by adding to pµ an arbitrary 4-vector proportional to kµ we
obtain a wavefunction φp(x) of the same form. Therefore, without loss of generality we can
impose on the 4-vector pµ the mass-shell condition p2 = m2. After substituting the solution
(2.15) into equation (2.14) and taking into account the mass-shell relation, the null character
of kµ and the harmonic gauge condition (2.11) we obtain for F(κx) the following first-order
differential equation:

2k · pF ′(κx) − pµpνh
µν(κx) = 0 (2.16)

where F ′(κx) is the derivative with respect to the argument. By integrating this first-order
equation, from (2.16) we finally obtain for φp(x) the Volkov-like solution

φp(x) = (2p0V )−
1
2 exp

(
−ip · x − i

2k · p

∫ κx

−∞
dκ hµν(κ)pµpν

)
. (2.17)

3. Green’s function for the scalar particle

The standard way of obtaining the Green’s function for the wave equation is to solve the
non-homogeneous boundary value problem with an added delta-function source term (see,
e.g., [17]):

(∂µ∂µ − hµν(x)∂µ∂ν + m2)	F (x, y) = −δ4(x − y). (3.1)

By extracting the singularity due to the mass-shell condition, we can assume for the Green
function the form

	F (x, y) =
∫

d4p

(2π)4

exp(−ip · (x − y))

p2 − m2 + iε
exp(−iF1(κx, κy)) (3.2)

where κx = k · x, κy = k · y. The complete Feynman’s propagator 	F (x, y) is therefore
a superposition of free propagators modulated by the phase factor exp{−iF1(κx, κy)}. The
equation for F1(κx, κy) is determined by (3.1), (3.2) and reads∫

d4p

(2π)4

exp(−ip · (x − y)) − iF1(κx, κy)

p2 − m2 + iε

[
2k · p

∂F1(κx, κy)

∂κx

− pµpνh
µν(κx)

]
=

∫
d4p

(2π)4
exp(−ip · (x − y))(1 − exp(−iF1(κx, κy))). (3.3)

The term in square brackets on the left-hand side of (3.3) is just equation (2.16). Therefore,
the left-hand side of (3.3) vanishes if we take

F1(κx, κy) = 1

2k · p

∫ κx

κy

dκpµpνh
µν(κ). (3.4)

We now verify that the integral on the right-hand side of (3.3) also vanishes. We first separate
the component of pµ in the direction of kµ [18], pµ = p′µ + αkµ where p′µ spans a three-
dimensional surface. Then the function F1(κx, κy) is independent of α and we can integrate
over α, getting∫

dα

2π
exp(−iα(κx − κy))(1 − exp(−iF1(κx, κy))) = δ(κx − κy)(1 − exp(−iF1(κx, κy))).

(3.5)
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The right-hand side of (3.5) is obviously vanishing in view of (3.4). The Green’s function has
therefore the form

	F (x, y) =
∫

d4p

(2π)4

exp(−ip · (x − y))

p2 − m2 + iε
exp

(
− i

2k · p

∫ κx

κy

dκ hµν(κ)pµpν

)
. (3.6)

This Feynman kernel was derived in paper [11] by looking at the problem in a semi-classical
way and by evaluating the quantum mechanical path integral in a closed form.

We would now like to comment on the classical nature of the results so far obtained for
the wavefunction (2.17) and the Green’s function (3.6). Indeed, the classical action for a
relativistic scalar particle in an external gravitational field

S = −m

∫ τf

τi

(gµν(x)ẋµẋν)1/2 dτ (3.7)

is obtained by integrating a singular Lagrangian, giving rise to the first-class constraint
χ = gµν(x)pµpν − m2 and to a vanishing canonical Hamiltonian. An extended Hamiltonian
proportional to the constraint, HE(x, p) = α1χ is then defined. For a linearized gravitational
wave field as (2.12) and in the harmonic gauge (2.11) we have

HE(x, p) = α1(η
µνpµpν − hµν(x)pµpν − m2). (3.8)

Writing the corresponding covariant Hamilton–Jacobi equation

ηµν ∂S(x, p)

∂xµ

∂S(x, p)

∂xν
− hµν(x)

∂S(x, p)

∂xµ

∂S(x, p)

∂xν
− m2 = 0 (3.9)

we shall look for a solution of the characteristic Hamilton function S(x, p), expressed as a
function of the coordinates xµ and the initial momentum pµ, of the general form

S(x, p) = −p · x − S1(κx). (3.10)

From (3.9) and (2.13), we get the differential equation

2k · pS ′
1(κx) − hµν(κx)pµpν = 0, (3.11)

identical to equation (2.16) for F(κx). Hence,

S(x, p) = −p · x − 1

2k · p

∫ k·x

−∞
dκ hµν(κ)pµpν (3.12)

so that the Volkov-like solution (2.17) turns out to be

φp(x) = (2p0V )−
1
2 eiS(x,p). (3.13)

The WKB method applied to (2.14) therefore gives exact result in the first-order approximation,
i.e., we have found an exact classical solution of equation (2.14). This circumstance had
already been observed for scalar particles in [12]: we shall prove in the next section that the
use of analytical mechanics involving skew-commuting variables allows us to generalize the
mentioned property to spinning particles as well.

4. Dirac particle in an external gravitational wave: linear theory

We now study the same problem for a spin 1
2 particle, considering the gravitational wave as an

external field defined in a flat Minkowski background. (For the connection with the canonical
intrinsic approach using Dirac equation in curved space–time, see [16].) Consequently, the
minimal linearized Lagrangian describing the interaction of fermionic matter with a given
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gravitational field treated as a spin two external field in a Minkowski background is given by
the expression [15, 16]

L = L0 − 1
2hµν(x)T

µν

0 (x), (4.1)

in complete analogy with the scalar case described by equation (2.6). The Lagrangian density
of the free fermionic matter L0 and the corresponding symmetrized energy–momentum tensor
T

µν

0 (x) are given by the equations

L0 = 1
2 ψ̄(x)(iγ µ−→

∂µ − m)ψ(x) + 1
2 ψ̄(x)(−iγ µ←−

∂µ − m)ψ(x) (4.2)

T
µν

0 (x) = −ηµνL0 +
i

4
(ψ̄(x)(γ µ−→

∂ν − γ µ←−
∂ν )ψ(x) + ψ̄(x)(γ ν−→∂µ − γ ν←−∂µ)ψ(x)). (4.3)

The Lagrangian density L then becomes

L =
(

1 +
1

2
h(x)

)
L0 − i

4
hµν(x)ψ̄(x)(γµ

−→
∂ν − γµ

←−
∂ν )ψ(x) (4.4)

and it can also be considered as obtained from the Lagrangian density established in general
relativity for the interaction of the Dirac field with a prescribed gravitational field in the linear
approximation [15, 16]. The Dirac equation we derive from (4.4) turns out to be [16]((

1 +
1

2
h(x)

)
(iγ µ∂µ − m) − i

2
hµν(x)γµ∂ν − i

4
∂νh

µν(x)γµ +
i

4
∂µh(x)γ µ

)
ψ(x) = 0

(4.5)

or, multiplying it again by
(
1 − 1

2h(x)
)

and taking the linear terms in hµν(x),(
(iγ µ∂µ − m) − i

2
hµν(x)γ µ∂ν − i

4
∂νh

µν(x)γµ +
i

4
∂µh(x)γ µ

)
ψ(x) = 0. (4.6)

The harmonic condition (2.11) further simplifies the wave equation (4.6) giving the final form(
iγ µ∂µ − i

2
hµν(x)γµ∂ν − m

)
ψ(x) = 0. (4.7)

Moreover, since the external field represents a linearized gravitational wave, we assume again
for hµν(x) the expression hµν(κx) given in (2.12) and (2.13).

Instead of solving the first-order Dirac equation (4.7), in analogy to what is done for
the electromagnetic interactions [10], we find it easier to consider the second-order equation
obtained by applying to (4.7) the operator

(
iγ µ∂µ − i

2hµν(κx)γµ∂ν + m
)
. By using the

supplementary gauge condition (2.11) we finally get(
∂µ∂µ − hµν(κx)∂µ∂ν +

i

2
σµν(∂

µhνρ(κx))∂ρ + m2

)
ψ(x) = 0. (4.8)

If we compare (4.8) with the scalar analogous equation (2.14), we can see that they are
identical but for a term representing the spin–gravitational field interaction, as should be
expected. Hence, we shall assume for the solutions of (4.8) a general form

ψp,s(x) = (2p0V )−
1
2 e−ip·xG(κx)u(p, s) (4.9)

with the initial condition

ψp,s(x) −→
x0→−∞

(2p0V )−
1
2 e−ip·xu(p, s) (4.10)

where u(p, s) is a constant spinor which is a solution of the corresponding free Dirac equation
(γ µpµ − m)u(p, s) = 0. Using the relations k2 = kµhµν(κx) = hµ

µ(κx) = 0 and p2 = m2,
from (4.9) and (4.8) we get the first-order differential equation

2k · pG′(κx) + i

(
hµν(κx)pµpν − 1

2
kµpν

dhνρ(κx)

dκx

σρµ

)
G(κx) = 0 (4.11)
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with solution

G(κx) = exp

(
− i

2k · p

∫ κx

−∞
dκ

(
hµν(κ)pµpν − 1

2
kµpν

dhνρ(κ)

dκ
σρµ

))
. (4.12)

Taking into account that (kµpνa
νρσρµ)n = 0 for n > 1, after some straightforward

simplifications the Volkov-like solution (4.9) can finally be put into the form

ψ(x) = (2p0V )−
1
2

(
1 +

i

4
kµpνh

νρ(κx)σρµ

)
× exp

(
−ip · x − i

2k · p

∫ κx

−∞
dκ hµν(κ)pµpν

)
u(p, s) (4.13)

where, as usual, σµν = i
2 [γµ, γν] [19].

5. Green’s function for the Dirac particle

We present here a direct calculation of the electron Green’s function in the presence of an
external gravitational plane wave. The Green’s function satisfies the equation(

iγ µ∂µ − i

2
hµν(κx)γµ∂ν − m

)
SF (x, y) = δ4(x − y) (5.1)

with the usual associated boundary conditions. As in section 4, we prefer working with a
second-order equation. In fact, if we let

SF (x, y) =
(

iγ µ∂µ − i

2
hµν(κx)γµ∂ν + m

)
	F (x, y) (5.2)

then, using again the gauge condition (2.11), we find that 	F (x, y) satisfies(
∂µ∂µ − hµν(κx)∂µ∂ν +

i

2
σµν(∂

µhνρ(κx))∂ρ + m2

)
	F (x, y) = −δ4(x − y). (5.3)

Equation (5.3) is identical to the analogous equation (3.1) for the scalar particles but for the
spin term (i/2)σµν(∂

µhνρ(κx))∂ρ . It is therefore natural to look for a solution of the form

	F (x, y) =
∫

d4p

(2π)4

exp(−ip · (x − y))

p2 − m2 + iε
exp(−iF1(κx, κy)N(κx, κy)) (5.4)

where F1(κx, κy) is the same as in the scalar case (see equation (3.4)) and N(κx, κy) is an
unknown function to be determined. From (5.4) and (5.3), the equation for N(κx, κy) becomes∫

d4p

(2π)4

exp(−ip · (x − y) − iF1(κx, κy))

p2 − m2 + iε

×
(

1

2
kµpν

dhνρ(κx)

dκx

σρµN(κx, κy) + 2ik · p
∂N(κx, κy)

∂κx

)

=
∫

d4p

(2π)4
e−ip·(x−y)(1 − N(κx, κy) exp(−iF1(κx, κy))). (5.5)

The left-hand side of equation (5.5) vanishes by choosing

N(κx, κy) = exp

(
i

4k · p

∫ κx

κy

dκ kµpν

dhνρ(κ)

dκ
σρµ

)
(5.6)
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and, as in the scalar case, we easily verify that the right-hand side also vanishes. Thus,

	F (x, y) =
∫

d4p

(2π)4

(
1 +

i

4k · p
kµpνh

νρ(κx)σρµ

)
× exp

(
−ip · x − i

2k · p

∫ k·x

−∞
dκ hµν(κ)pµpν

)
1

p2 − m2 + iε

(
1 − i

4k · p
kµpνh

νρ(κy)σρµ

)
exp

(
ip · y +

i

2k · p

∫ k·y

−∞
dκ hµν(κ)pµpν

)
(5.7)

is a solution of the inhomogeneous second-order Dirac equation (5.3) and from equation (5.2)
we finally get for the Feynman propagator SF (x, y) the expression

SF (x, y) =
(

iγ µ∂µ − i

2
hµν(κx)γµ∂ν + m

)
	F (x, y)

=
∫

d4p

(2π)4

(
1 +

i

4k · p
kµpνh

νρ(κx)σρµ

)
× γµpµ + m

p2 − m2 + iε

(
1 − i

4k · p
kµpνh

νρ(κy)σρµ

)
× exp

(
−ip · (x − y) − i

2k · p

∫ κx

κy

dκ hµν(κ)pµpν

)
. (5.8)

As we have already discussed for the scalar particle in section 3, it would be interesting
to show the pseudoclassical nature of the results obtained for the Dirac particle too. We start
with the pseudoclassical Lagrangian for a spin 1

2 particle in an arbitrary external gravitational
field [9]

L = − i

2
gµν(x)ζµ

(
ζ̇ ν + �ν

λρ(x)ẋρζ λ
) − i

2
ζ5ζ̇5 − m

(
gµν(x)(ẋµ − i

m
ζµζ̇5)(ẋ

ν − i

m
ζνζ̇5)

) 1
2

(5.9)

where �ν
λρ(x) are the usual Christoffel symbols and the Grassmann variables ζµ are quite

naturally introduced, since in quantization they correspond to the use of the spin matrices
conform to metric γ µ (see for instance [20] and references therein). By introducing the
vierbein field GA

µ(x) and its inverse H
µ

B (x)

gµν(x) = ηABGA
µ(x)GB

ν (x), gµν(x) = ηAB(x)H
µ

A(x)Hν
B(x) (5.10)

H
µ

A (x)GA
ν (x) = δµ

ν , H
µ

A (x)GB
µ(x) = δB

A (5.11)

we can transform a world 4-vector ζµ into a ‘local’ one and we can also introduce Grassmann
variables ξA corresponding, after quantization, to the usual Dirac matrices (flat space spin
matrices)

ξA = GA
µ(x)ζµ, ζµ = H

µ

A(x)ξA, ξ5 = ζ5. (5.12)

The singular Lagrangian (5.9) gives rise to the two first-class constraints χD = Pµζµ −
im(π5 − (i/2)ζ5) and χ = gµν(x)PµPν − m2, where Pµ is the canonical momentum and
Pµ = Pµ − (i/2)gρν(x)ζ ρ�ν

µλ(x)ζ λ is the mechanical one. We also have a second-class
constraint

πµ = i

2
gµν(x)ζ ν (5.13)
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and, in addition, we can further require [3, 9]

π5 = − i

2
ζ5. (5.14)

Relations (5.13), (5.14) form a set of second-class constraints whose relevant Dirac brackets
are

{ζ5, ζ5} = −i, {ζµ, ζ ν} = igµν(x), {ξA, ξB} = iηAB. (5.15)

Some remarks on the quantization are now in order. The Dirac brackets (5.15) give the
anticommutation rules

[̂ξ5, ξ̂5]+ = 1, [̂ξA, ξ̂B]+ = −ηAB, [̂ζµ, ζ̂ ν]+ = −gµν(x). (5.16)

The first and the second relation can be satisfied by putting

ξ̂5 = 2− 1
2 γ5, ξ̂A = 2− 1

2 γ5γ
A (5.17)

where γ5 and γ A are the usual flat space Dirac matrices. We must now choose a representation
for the algebra of the operators ζ̂ µ. A possible choice which will correspond to the use of the
spin matrices conform to metric is

ζ̂ µ = H
µ

A(x)̂ξA = 2− 1
2 γ5γ

µ (5.18)

where

[γ µ, γ ν]+ = 2gµν(x). (5.19)

As usual, the extended Hamiltonian HE is written as a linear combination of the first-class
constraints with arbitrary coefficients and the simplest choice appears to be

HE = α1(g
µν(x)PµPν − m2). (5.20)

The constraint χD becomes χD = Pµζµ − mζ5, once equation (5.14) is accounted for. It
could be used, after quantization, for constructing the spinorial states. Considering again
the restriction to a linearized gravitational wave field in the harmonic gauge, (2.12), (2.13)
and taking into account the linearized form H

µ

A(κx) = δ
µ

A − (1/2)h
µ

A(κx),G
A
µ(κx) = δA

µ +
(1/2)hA

µ(κx) of the vierbein fields, we finally get

HE = α1

(
ηµνPµPν − hµν(κx)PµPν + iPρ

∂hρν(κx)

∂xµ

ξµξν − m2

)
. (5.21)

Therefore the variables ζµ satisfy the linearized relations

ζµ = ξµ − 1
2h

µ

A(x)ξA (5.22)

and we finally obtain the following equation for the Hamilton’s characteristic function S(x):

ηµν ∂S(x)

∂xµ

∂S(x)

∂xν
− hµν(x)

∂S(x)

∂xµ

∂S(x)

∂xν
− i

∂S(x)

∂xρ

∂hρν(x)

∂xµ

ξµξν − m2 = 0. (5.23)

The solution (3.12) obtained in the scalar case suggests, for the pseudoclassical Hamilton
characteristic function, the ansatz

S(x) = −p · x − 1

2k · p

∫ κx

−∞
dκ pµpνh

µν(κ) + SD(κx). (5.24)

The unknown function SD will satisfy the first-order differential equation

2k · p
dSD(κx)

dκx

+ ikµpν

dhνρ(κx)

dϕx

ξρξµ = 0 (5.25)
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with solution

SD(x) = − i

2k · p

∫ κx

−∞
dκ kµpν

dhνρ(κ)

dκ
ξρξµ. (5.26)

It can easily be seen that the operator Ŝ obtained upon quantization—through the use of
equations (5.17)—of the pseudoclassical S(x) given in (5.24) can be represented as

Ŝ = −p · x − 1

2k · p

∫ κx

−∞
dκ

(
hµν(κ)pµpν − 1

2
kµpν

dhνρ(κ)

dκ
σρµ

)
. (5.27)

Therefore by applying the operator (2p0V )−
1
2 eiŜ to a free constant spinor u(p, s) we see that

the Volkov-like solution (4.13) will be written as follows

ψ(x) = (2p0V )−
1
2 eiŜu(p, s) (5.28)

completely showing the semi-classical nature of the solution.

References

[1] Golfand Yu A and Lichtman E P 1971 JETP Lett. 13 452
Volkov D V and Akulov V P 1973 Phys. Lett. B 46 109
Wess J and Zumino B 1974 Nucl. Phys. B 70 39
Salam A and Strathdee J 1974 Nucl. Phys. B 76 477

[2] Casalbuoni R 1976 Nuovo Cimento A 33 115
Casalbuoni R 1976 Nuovo Cimento A 33 389

[3] Barducci A, Casalbuoni R and Lusanna L 1976 Nuovo Cimento A 35 377
[4] Brink L, Deser S, Zumino B, Di Vecchia P and Howe P 1976 Phys. Lett. B 46 435

Berezin F A and Marinov M S 1977 Ann. Phys., NY 104 336
[5] Giachetti R, Ragionieri R and Ricci R 1981 J. Diff. Geom. 16 297

Giachetti R and Ricci R 1986 Adv. Math. 62 84
[6] Barducci A, Casalbuoni R and Lusanna L 1977 Nucl. Phys. B 124 93
[7] Bordi F and Casalbuoni R 1980 Phys. Lett. B 93 308

Barducci A, Bordi F and Casalbuoni R 1981 Nuovo Cimento B 64 287
[8] Barducci A and Giachetti R 2003 J. Phys. A: Math. Gen. 36 8129
[9] Barducci A, Casalbuoni R and Lusanna L 1977 Nucl. Phys. B 124 521

[10] Volkov D M 1935 Z. Phys. 94 25
Berestetski V, Lifchitz E and Pitayevski L 1973 Théorie Quantique Rélativiste (Moscow: Mir)
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